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1 Introduction and summary of the results

AdS4/CFT3 is currently emerging as a novel paradigm of holography that has qualitatively

different properties from the more familiar AdS5/CFT4 correspondence. Particularly in-

triguing is the recent accumulation of evidence that AdS4/CFT3 can be used to describe

a plethora of phenomena in 2 + 1 dimensional condensed matter systems, such as quan-

tum criticality [1, 2], Quantum Hall transitions [3–6], superconductivity [7–11], superfluid-

ity [12, 13] and spontaneous symmetry breaking [14–16]. Furthermore, AdS4/CFT3 is the

appropriate setup to study the holographic consequences of generalized electric-magnetic

duality of gravity and higher-spin gauge fields [17–21].

In the absence of an explicit AdS4/CFT3 correspondence example,1 various toy models

have been used to study its general qualitative aspects. One of the aims of the present

1The recently suggested field theoretic models for M2 branes [22–27] are important steps towards the

understanding of the boundary side of AdS4/CFT3.
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work it to provide yet another model that can be used to unveil some salient and intriguing

properties of AdS4/CFT3 holography. However, this is not our only aim. We also wish to

study here the relevance of torsion to four dimensional gravity from a holographic point

of view. The study of torsion is an interesting subject in itself that poses formal and

phenomenological challenges.2 In the context of a string theory description of gravity,

torsion is omnipresent through antisymmetric tensor fields. AdS4/CFT3 provides the basic

setup where four dimensional torsion can be holographically investigated.

We consider a simple toy model where torsion is introduced via the topological Nieh-

Yan class. In particular, we consider the modification of the Einstein-Hilbert action with

a negative cosmological constant by the Nieh-Yan class, the latter having a spacetime-

dependent coefficient. In the context of the 3+1-split formalism for gravity [17] we point out

that the torsional degrees of freedom are carried by the “gravitational magnetic field”. In

pure gravity the magnetic field is fully determined by the frame field and torsion vanishes.

In our model, the spacetime dependence of the Nieh-Yan coefficient makes some of the

components of the magnetic field dynamical and as a consequence torsional degrees of

freedom enter the theory. Our toy model is simple enough such that only one of the

torsional degrees of freedom becomes dynamical. This degree of freedom can be either

carried by a pseudoscalar, in which case our model is equivalent to a massless pseudoscalar

coupled to gravity, or by a two-form gauge potential. In the latter case our model becomes

equivalent to a Kalb-Ramond field coupled to gravity.

Next, we find an exact solution of the equations of motion in Euclidean signature.

Our metric ansatz is that of a bulk domain wall. The solution, the torsion vortex, has

two distinct asymptotically AdS4 regimes along the “radial” coordinate. The pseudoscalar

has a kink profile and it is finite at both of the asymptotic regimes. Our torsion vortex

can be viewed as a generalization of the axionic wormhole solution of [33] in the case of

non-zero cosmological constant. See also [34] for recent work on AdS wormholes. Having

in mind the holographic interpretation of our model we focus mainly on the case where

the torsional degree of freedom is carried by a pseudoscalar field. Following standard

holographic recipes we find that the torsion vortex is the gravity dual of a three dimensional

system that possesses two distinct parity breaking vacua. The two vacua are distinguished

by the relative sign of the pseudoscalar order parameter. Our bulk picture suggests that

the transition from one vacuum to the other can be done by a marginal deformation of

the boundary theory. In appendix B we suggest that the above qualitative properties can

be realized in the boundary by the three dimensional Gross-Neveu model coupled to U(1)

gauge fields.

Finally, we point out that the bulk physics of our vortex solution bears some resem-

blance to the Abrikosov vortex of superconducting systems. There is a natural mapping

of the parameters of the torsion vortex to those of the Abrikosov vortex. We show that

the gravitational parameter that is interpreted as an order parameter satisfies a φ4-like

equation and this motivates us to suggest that the cosmological constant is related to the

“critical temperature” as Λ ∼ T − Tc. We end with a discussion of multi-vortex config-

2See [28–30] for recent reviews and [31, 32] for other recent works.
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urations and vortex condensation. The outcome of this analysis is that H-flux supports

bubbles of flat spacetime.

The paper is organized as follows. In section 2 we discuss the torsional degrees of

freedom in gravity and their relation with the gravitational magnetic field. In section 3 we

present our toy model and its various equivalent manifestations and discuss its 3+1-split

formalism of [17]. In section 4 we present the explicit torsion vortex solution of our model.

In section 5 we discuss the holography of the torsion vortex. Section 6 contains the bulk

physics of the vortex and its relationship to the Abrikosov vortex. It also contains the

discussion of multi-vortices and vortex condensation. Technical details and the discussion

of the three-dimensional Gross-Neveu model coupled to U(1) gauge fields are contained in

the appendices.

2 Torsional degrees of freedom in gravity

2.1 Preliminaries

In this paper we will consider a four dimensional spacetime with a negative cosmological

constant. The Einstein-Hilbert action may be written as3

IEH =

∫

M

(
ǫabcde

a ∧ eb ∧Rcd −
1

6
Λǫabcde

a ∧ eb ∧ ec ∧ ed
)
, (2.1)

where ea denote the one-form frame fields, while ωab are the connection one-forms with

curvature Rab = dωab+ω
a
c∧ω

c
b. As is well-known the variation of (2.1) gives the Einstein

equations and also the zero torsion constraint T a = dea + ωab ∧ e
b = 0. By virtue of the

latter this action can be written entirely in terms of metric variables.

There are also a number of other terms that one may consider. These are all of potential

interest to holography because being total derivatives they may induce interesting boundary

effects. We may parameterize these terms as follows (writing all possible SO(3,1)-invariant

4-forms constructed from ea, Rab, T
a):

Itop = n

∫

M
CNY + 2γ−1

∫

M
CIm + p

∫

M
P4 + q

∫

M
E4 , (2.2)

where CNY = T a ∧ Ta − Rab ∧ ea ∧ eb = d(T a ∧ ea) is the Nieh-Yan form, γ is often

referred to as the Immirzi parameter with CIm = Rab ∧ e
b ∧ ea, P4 = − 1

8π2R
a
b ∧ R

b
a =

− 1
8π2 d(ω

a
b ∧R

b
a−

1
3ω

a
b ∧ω

b
c ∧ω

c
a) is the Pontryagin form and E4 = − 1

32π2 ǫabcdR
ab ∧Rcd

is the Euler form. We note that P4 + σ⊥a
2

4π2 CNY and CNY − CIm are actually SO(3,2)

invariants [29]. These terms become of more interest, even in gravity, if we allow the

coefficients to become fields. Although we will not consider this problem here in full

generality, we will consider a particular example. We note that there is older literature,

principally by d’Auria and Regge [35] that also considered some such cases (usually in

asymptotically Minkowski geometries). In the course of the paper, we will review what is

known from those older works. The purpose of our work, amongst other things, is to bring

this up to date, and in particular focus on aspects of holography.

3We use IEH = −16πG4SEH where SEH is the usually normalized gravitational action. To fix notation we

note that the Einstein equations that follow from SEH are Gµν +Λgµν = 0. We will also write Λ = −3σ⊥/L
2.
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2.2 Torsion and the magnetic field of gravity

Our simple model involves only the Nieh-Yan (NY) term. It is interesting to discuss the

physics of this topological invariant before we embark on detailed calculations. We will

see below that the NY term in gravity plays a role similar to that of the θ-angle in gauge

theories.

To see this, we explain below the relationship between the gravitational magnetic field

Bα and torsion. Consider the 3+1 split4 of the Einstein-Hilbert action (1) with the addition

of the usual gravitational Gibbons-Hawking boundary term IGH [17, 19, 20]

IEH + IGH =

∫
dt ∧

(
˙̃eα ∧ (−4σ⊥ǫαβγ ẽ

β ∧Kγ)

+2σ⊥N
{

2d̃ (Bα ∧ ẽα) + 2Bα ∧ T̃α

+ǫαβγ

(
σBα ∧Bβ −Kα ∧Kβ −

σ⊥Λ

3
ẽα ∧ ẽβ

)
∧ ẽγ

}

−4σ⊥N
αǫαβγ(D̃K)β ∧ ẽγ + 4Qα(Kβ ∧ ẽ

β) ∧ ẽα

+4q0α

{
ǫαβγ T̃

β ∧ ẽγ
} )

. (2.3)

In the 3+1 split formalism the dynamical variables in (2.3) are the “spatial”5 one-forms

ẽα, Kα and Bα. The first two are canonically conjugate variables. The magnetic field

Bα carries the torsional degrees of freedom as it can be seen for example if we write the

definition of the non-trivial “spatial” torsion as

T̃α = d̃ẽα − σǫαβγBβ ∧ ẽγ . (2.4)

It is easily seen that the radial component of torsion T 0 is determined by ẽα and Kα. Notice

that (2.4) implies that the tensor Bαβ is odd under “spatial” parity, hence its trace Bα
α is

a pseudoscalar. Although a priori the torsional degrees of freedom are not connected with

the pair of conjugate variables ẽα and Kα, they are not dynamical as there is no kinetic

term for Bα. Rather, they enter (2.3) algebraically and as such they give the algebraic zero

torsion condition by virtue of which the magnetic field is related to the frame field. Indeed,

as discussed in ref. [17], the q0α constraint sets to zero the antisymmetric part of Bα in

deDonder gauge, such that the first term in the second line of (2.3) vanishes. Then, the

variation of (2.3) with respect to Bα yields T̃α = 0, leaving as true dynamical variables ẽα

and Kα. This is the gravitational analogue of the electromagnetic case where the magnetic

field is related to the gauge potential via the Bianchi identity.

Consider now adding to the Einstein-Hilbert action the Nieh-Yan class CNY with a

constant coefficient θ. Over a compact manifold, the NY class is a topological invariant

4In appendix A we present a brief review of the 3+1 split formalism where the definitions of the various

relevant quantities appear and notation is explained. We note here that σ is the overall signature of the

spacetime, σ⊥ is the signature of the “radial” direction and σ3 the signature of the boundary.
5By spatial, we will mean orthogonal to the “radial” coordinate t. In the case of AdS4, this radial

coordinate is spacelike, and thus σ⊥ = +1. Then, Lorentzian AdS4 corresponds to σ3 = −1 while Euclidean

AdS4 corresponds to σ3 = 1.
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and takes integer values6 [29]. Having in mind holography, we are interested here in

manifolds with boundary. In particular, the 3+1 split has been set up so that the boundary

is a constant-t slice. The NY term reduces to a boundary contribution. The explicit

calculation yields

INY ≡ −2σ⊥θ

∫
CNY = 2σ⊥θ

∫
dt ∧

[
2ǫαβγ ˙̃eα ∧ ẽβ ∧Bγ + ǫαβγḂ

α ∧ ẽβ ∧ ẽγ
]
. (2.5)

Adding (2.5) to (2.3) we obtain

IEH + IGH + INY =

∫
dt ∧

(
˙̃eα ∧ (−4σ⊥ǫαβγ ẽ

β ∧ [Kγ − θBγ]) + 2σ⊥θǫαβγḂ
α ∧ ẽβ ∧ ẽγ

+ constraint terms
)
. (2.6)

Notice that the INY term has two effects. One is to modify the canonical momentum

variable Kα 7→ Kα − θBα. This is analogous to the effect of the θ-angle in the canonical

description of electromagnetism [36]. The other is to provide a kinetic term for the singlet

component of the magnetic field (one easily verifies that only Bα
α contributes in the second

term in the first line of (2.6)). This second effect has no analogue in electromagnetism.

Taking the variation of (2.6) with respect to Bα, one finds that the zero torsion condition

still holds. This is expected of course since the INY term is purely a boundary term. As a

consequence, the true dynamical variables remain ẽα and Kα. However, the holography is

slightly modified. The variation of (2.6) gives on-shell

δ (IEH + IGH + INY)on shell =

∫

∂M
δẽα ∧

(
−4σ⊥ǫαβγ ẽ

β ∧ [Kγ − θBγ]
)

on shell
. (2.7)

After the appropriate subtraction of divergences [19, 20], (2.7) yields a modified boundary

energy momentum tensor. The modification is due to the term 4σ⊥θǫαβγ ẽ
β ∧ Bγ which

is parity odd and corresponds to the unique symmetric, conserved and traceless tensor of

rank two and scaling dimension three that can be constructed from the three-dimensional

metric [37]. It is the exact analogue of the topological spin-1 current constructed from the

three dimensional gauge potential.

The form of the action (2.6) unveils an intriguing possibility. The above holographic

interpretation was based on the zero torsion condition that connects Bα to the frame field.

However, to get the zero torsion condition from (2.6) we needed to integrate by parts the

last term in the first line. Hence, if θ were t-dependent, the torsion would no longer be zero

and the trace Bα
α would become a proper dynamical degree of freedom independent of ẽα.

In such a case the holographic interpretation of (2.6) would change. The new bulk degree

of freedom would couple to a new pseudoscalar boundary operator. As a consequence, we

have the possibility to probe additional aspects of the boundary physics and describe new

2+1 dimensional phenomena. That we do in the next section.

6More precisely, CNY/(2πL)2 is integral, as it is equal to the difference of two Pontryagin forms, one

SO(3,2) and one SO(3,1).
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3 The Nieh-Yan models

3.1 General aspects

In the previous section we sketched a mechanism by which torsional degrees of freedom

become dynamical. In particular, we have argued that the addition of the Nieh-Yan class

with a space-time-dependent coefficient in the Einstein-Hilbert action makes dynamical

one pseudoscalar degree of freedom which is connected to the trace of the gravitational

magnetic field. Adding boundary terms to the bulk action corresponds to a canonical

transformation. Consequently, by adding boundary terms we can change the canonical

interpretation and the variational principle. Consider first the action

I ′NY = IEH[e, ω] + IGH[e, ω] + 2

∫

M
F (x)CNY , (3.1)

where F is a pseudoscalar “axion” field with no kinetic term. If F ≡ −σ⊥θ were a constant,

this theory would be equivalent to that studied in the last section. With F = F (x), we

have additional terms in the action involving gradients of F . If we perform the 3 + 1 split

on this action, we will find that ẽα and Bα are canonical coordinates, and their conjugate

momenta will depend on F .

The action as given may be supplemented by additional boundary terms. Such bound-

ary terms are analogous to the Gibbons-Hawking term in gravity, but here involve the

torsional degrees of freedom. In particular, we can replace I ′NY by

INY = IEH[e, ω] + IGH[e, ω] − 2

∫

M
dF ∧ Ta ∧ e

a . (3.2)

This action is such that ẽα and F are canonical coordinates with appropriate boundary

conditions, while Bα appears in the momentum conjugate to F . To investigate this theory,

we note that the variation of the action takes the form

δINY = 2

∫

M
δed ∧

[
ǫabcde

b ∧

(
Rcd −

1

3
Λec ∧ ed

)
+ 2dF ∧ Td

]

+2

∫

M
δωab ∧

[
ǫabcdT

c ∧ ed + dF ∧ eb ∧ ea

]
+ 2

∫

M
δF CNY

+2

∫

M
d

[
δea ∧

(
ǫabcde

b ∧ ωcd − dF ∧ ea

)
− Ta ∧ e

aδF
]
. (3.3)

A non-trivial configuration of F sources a particular component of the torsion. Indeed the

classical equations of motion can be manipulated to yield in the bulk

T a ∧ ea = 3 ∗4 dF , (3.4)

where ∗4 denotes the Hodge-∗ operation. However, as d’Auria and Regge [35] showed, this

classical system is equivalent to a pseudoscalar coupled to torsionless gravity.

IPS = IEH[e, ω
◦
] + IGH[e, ω

◦
] − 3

∫

M
dF ∧ ∗4dF . (3.5)

– 6 –
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This comes about as follows. We write the connection as ω = ω
◦

+Ω, where ω
◦

is torsionless,

and insert the equation of motion (3.4). The latter becomes an equation7 for Ω, and we

obtain (3.5).

A massless pseudoscalar field coupled to torsionless gravity is holographically dual

to composite pseudoscalar operators of dimension ∆ = 3, 0 in the boundary. The usual

holographic dictionary then says that only the ∆ = 3 operator appears in the boundary

theory since only this is above the unitarity bound of the three dimensional conformal

group SO(3,2). A scalar operator with dimension ∆ = 0 would simply correspond to a

constant in the boundary. Hence, the sensible holographic interpretation of the massless

bulk pseudoscalar is that its leading behaviour determines the marginal coupling of a ∆ = 3

operator; the expectation value of the operator itself is determined by the subleading

behaviour of the bulk pseudoscalar.

Another equivalent formulation of this bulk theory is obtained by writing

∗4 dF =
1

3
H . (3.6)

with H a 3-form field. This is the parameterization that would be most familiar from

string theory, as the system simply corresponds to an antisymmetric 2-form field. In this

formulation, we write

IKR = IEH[e, ω
◦
] + IGH[e, ω

◦
] +

1

3

∫

M
H ∧ ∗4H +

√
2

3

∫

M
C ∧ d ∗4 H

= IEH[e, ω
◦
] + IGH[e, ω

◦
] −

1

2

∫

M
dC ∧ ∗4dC +

∫

M
d(C ∧ ∗4dC) . (3.7)

In the first equation, C appears as a Lagrange multiplier for the “Gauss constraint” and

in the second expression, we have solved for the H equation of motion in the bulk, which

is just H =
√

3
2dC.

3.2 The 3+1-split of the pseudoscalar Nieh-Yan model

To investigate the holographic aspects of our model it is most useful to use the “radial

quantization” in which we think of the radial coordinate as “time” t. We have derived the

radial 3+1 split in the first order formalism in [17], and this is summarized with expla-

nations of notation in appendix A. Here we update that calculation to include torsional

terms. The Nieh-Yan deformation gives

− 2

∫
dF ∧ T a ∧ ea = 2

∫
dt ∧

{
−Ḟ T̃α ∧ ẽα − ˙̃eα ∧ d̃F ∧ ẽα +N [2d̃F ∧Kα ∧ ẽα]

+Nα[2d̃F ∧ T̃α] +Qα[−σǫαβγ d̃F ∧ ẽβ ∧ ẽγ ]
}
. (3.8)

We see that the F field makes a contribution to the constraints, and has a conjugate

momentum proportional to the scalar part of the torsion (the part transverse to the radial

7Explicitly this is Ωa
b = σ

4
ǫacd

b∂cFed.

– 7 –
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direction). The full bulk action becomes

I =

∫
dt ∧

(
˙̃eα ∧ (4σ⊥ǫαβγK

γ ∧ ẽβ − 2d̃F ∧ ẽα) − 2Ḟ (ẽα ∧ T̃α)

+N

{
2ǫαβγ

(
(3)Rαβ − σ⊥K

α ∧Kβ −
Λ

3
ẽα ∧ ẽβ

)
∧ ẽγ + 4d̃F ∧Kα ∧ ẽα

}

+4Nα
{
−σ⊥ǫαβγ(D̃K)β ∧ ẽγ + d̃F ∧ T̃α

}

+4Qα
{

(Kβ ∧ ẽ
β) ∧ ẽα −

1

2
σǫαβγ d̃F ∧ ẽβ ∧ ẽγ

}

+ 4q0α

{
ǫαβγT̃

β ∧ ẽγ
})

. (3.9)

We notice that the Q-constraint term can be written in the form

4Qαẽ
α ∧

(
Kβ ∧ ẽ

β − σ ∗3 d̃F
)
. (3.10)

Because of this constraint (which relates the antisymmetric part of the extrinsic curvature

to the vorticity of F ), the momentum conjugate to ẽα is symmetric, i.e.

Πα = 4σ⊥ǫαβγK
γ ∧ ẽβ − 2d̃F ∧ ẽα

= 4σ⊥

(
ǫαβγK

γ ∧ ẽβ −
1

2
σ3 ∗3 (Kβ ∧ ẽ

β) ∧ ẽα

)
. (3.11)

When written out in components, one finds that the antisymmetric part K[αβ] cancels

Πα = 4σ⊥(K(βα) − trK ηβα)ẽβ . (3.12)

This result is consistent with the fact noted above, that the system may be equivalently

described as a pseudoscalar field coupled to torsionless gravity. Moreover, if we take the

deDonder gauge d†ẽα = 0, the torsion constraint implies that B is symmetric.

The q0α constraint yields T̃ βαβ = 0. Out of the nine components of T̃ , which transform

as 5 + 3 + 1 under SO(3) (or SO(2,1)), this sets the triplet to zero (the 5 also vanishes on

an equation of motion). The momentum conjugate to F is given by

ΠF = −2ǫαβγ T̃αβγ . (3.13)

This is the singlet part of the torsion, which has become dynamical in this description of

the theory, in the sense that it is canonically conjugate to F .

4 The torsion vortex

We will now simplify the analysis by taking a coordinate basis and looking for solutions of

the form

ẽα = eA(t)dxα , N = 1 , Nα = 0 , (4.1)

and we will further suppose that F = F (t). In this case Kα and Bα reduce to one degree

of freedom each as a result of the constraints

Kα = kẽα , Bα = bẽα , (4.2)

– 8 –
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and one finds ΠA = −4σ⊥k and ΠF = 2σb. The action then takes the following relatively

simple Hamiltonian form

INY ∝

∫
dt d3x e3A(t)

[
ȦΠA + ḞΠF −

(
1

2
σ3Π

2
F +

1

8
σ⊥Π2

A +
2

3
Λ

)]
. (4.3)

and the equations of motion give

Π̇A = 3ḞΠF , Π̇F + 3ΠF Ȧ = 0 , ΠA = 4σ⊥Ȧ , ΠF = σ3Ḟ , (4.4)

Π2
A + 4σΠ2

F +
16

3
σ⊥Λ = 0 . (4.5)

These equations of motion could of course alternatively be obtained by considering the

theory in the form (3.5). It is convenient to rescale F (t) = 1
3Θ(t). Then the equations of

motion can be put in the form

Ä+ 3Ȧ2 − 3a2 = 0 , Ä =
1

12
σΘ̇2 , Θ̈ + 3Θ̇Ȧ = 0 . (4.6)

where we have set Λ = −3σ⊥a
2 with a = 1/L. These are of the standard form of domain

wall equations that have appeared numerous times in the AdS/CFT literature. However,

there is a crucial difference. Notice that the first two of (4.6) imply

Ȧ2 +
1

36
σΘ̇2 − a2 = 0 . (4.7)

For Euclidean signature (σ = σ3 = 1) the second term in (4.7) has positive sign in con-

trast to most of the other holographic studies. This is due to the fact that in passing

from Lorentzian to Euclidean signature the pseudoscalar kinetic term acquires the “wrong

sign” [38]. This property allows for a remarkable exact solution to the above system of

non-linear equations in Euclidean signature, which we refer to as the torsion vortex. To

obtain it we define

h(t) = Ȧ(t) , (4.8)

at which point we have

ḣ =
1

12
Θ̇2 , ḣ+ 3(h2 − a2) = 0 . (4.9)

The general solution is of the form

h(t) = a tanh 3a(t− t0) (4.10)

and we then have

ΠF = Ḟ = ±2
√
a2 − h2(t) = ±2a sech 3a(t− t0) (4.11)

which gives

Θ(t) = Θ0 ± 4 arctan
(
e3a(t−t0)

)
. (4.12)
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Figure 1. Plot of the torsion vortex solution vs. t. The blue dashed line is eA(t) while the red

solid line is Θ(t). To make the plot, we have chosen Θ0 = 0, t0 = 0 and α = 1.

The ± sign corresponds to kink/antikink and we will without loss of generality choose the

+ sign. We may also solve for

eA(t) = α(2 cosh 3a(t− t0))
1/3 (4.13)

The parameter α is an arbitrary positive integration constant that sets the overall scale of

the spatial part of the metric. t0 may be interpreted as the position of the vortex; when

t0 = 0 the torsion vortex sits in the middle between the two asymptotically AdS4 regimes.

Below, we will discuss the interesting holographic interpretation of the torsion vortex.

Note the curvature and torsion of this solution:

Rαβ = −Ḟ Ȧ ǫαβγdt ∧ e
γ − a2eα ∧ eβ , (4.14)

Rα0 =
(
ḣ+ h2

)
dt ∧ eα −

1

2
Ḟ Ȧ ǫαβγe

β ∧ eγ , (4.15)

Tα = −
1

2
Ḟ ǫαβγe

β ∧ eγ , (4.16)

T 0 = 0 . (4.17)

These are non-singular for all t ∈ (−∞,∞). The torsion vortex solution has divergent

action, but this divergence is cancelled by boundary counterterms, the same counterterms

which render the action of AdS4 finite. To see this, the energy of the torsion vortex can

be computed by evaluating the Euclidean action on the solution. Introducing a cutoff at

t = ±L, we find

Itv,on−shell = 4a2

∫
ǫαβγdx

α ∧ dxβ ∧ dxγ
∫
dte3A(t) (4.18)

= (6

∫
V̂ ol3) ·

(
4

3
aα3e3aL + · · ·

)
, (4.19)

where the ellipsis contains terms that vanish when the cutoff is removed. As in pure AdS4,

an appropriate counterterm is of the form [39, 40]

Ic.t. = −
4a

3

∫

∂M
ǫαβγ ẽ

α ∧ ẽβ ∧ ẽγ . (4.20)
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In the present case, we have such a counterterm on each asymptotic boundary, and thus

we find

Ic.t. = −2
2a

3
α3e3aL · (6

∫
V̂ ol3) , (4.21)

which exactly cancels the divergent energy of the torsion vortex.

Furthermore, we note that in the Kalb-Ramond representation, the solution has

H = Θ̇V ol3 = ±6aα3V̂ ol3 ≡ ĤV̂ ol3 , (4.22)

where V̂ ol3 = 1
6ǫαβγdx

α∧dxβ ∧dxγ . This corresponds to a “topological quantum number”

of the kink ∫
∗4H = ±∆Θ = ±2π. (4.23)

5 The torsion vortex as the gravity dual of parity symmetry breaking

The holographic interpretation of the torsion vortex is rather interesting. To study this,

we set to zero without loss of generality the integration constant Θ0 = 0 and pick the plus

sign in (4.11), (4.12). Next we need the asymptotic expansion of the vierbein which reads

ẽα = 2−1/3αe±a(t−t0)

(
1 +

1

3
e∓6a(t−t0) + · · ·

)
dxα for t→ ±∞ . (5.1)

This shows that our solution is asymptotically anti-de Sitter for both t → ±∞. The two

asymptotic AdS spaces have the same cosmological constant. From this expansion we could

read the expectation value of the renormalized boundary energy momentum tensor which

would be given by the coefficient of the e±3at term (see e.g. [19, 20]). Such a term is missing

in (5.1), hence the expectation value of the boundary energy momentum tensor is zero.

It is not immediately apparent how to interpret these two asymptotic regimes. Are

they truly distinct, or should they be identified in some way? We note that the pseudoscalar

behaves in these asymptotic regimes as

Θ(t) → 4e−3a(t−t0) −
4

3
e−9a(t−t0) + · · · for t→ −∞ , (5.2)

Θ(t) → 2π − 4e3a(t−t0) +
4

3
e9a(t−t0) + · · · for t→ +∞ . (5.3)

From the above we confirm that Θ(t) is dual to a dimension ∆ = 3 boundary pseudoscalar

that we denote O3. In each one of the asymptotically AdS regimes, the leading constant

behavior of Θ(t) corresponds to the source (i.e., coupling constant) for O3 and the sub-

leading term proportional to e∓3a(t−t0) to the expectation value 〈O3〉. The two asymptotic

regimes are distinguished by the behavior of Θ. In fact, the essential difference is parity.

We can now describe the holography of our torsion vortex. In the t → −∞ boundary

sits a three-dimensional CFT at a parity breaking vacuum state. The order parameter is

the expectation value of the pseudoscalar which is 〈O3〉 = 4 in units of the AdS radius.

The expectation value breaks of course the conformal invariance of the boundary theory.

Then, the theory is deformed by the same pseudoscalar operator gO3 where g is a marginal
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coupling. The torsion vortex provides the holographic description of that deformation.

Nevertheless, our solution should not be interpreted in terms of the usual holographic

renormalization group flow. In our case, at t→ +∞ the space becomes AdS with the same

radius as at t→ −∞. Hence, the two boundary theories have the same “central charges”.8

We suggest that instead of interpreting the solution in terms of an RG flow, we should

think of it as a transition between two inequivalent vacua of a single boundary theory.

This statement is supported by the behavior of Θ(t) in the two asymptotic regimes. For

t → ∞ the pseudoscalar asymptotes to the configuration (5.3). The interpretation is now

that when the marginal coupling takes the fixed value g∗ = 2π we are back to the same

CFT (i.e. having the same central charge) however in a distinct parity breaking vacuum

such that 〈O3〉 = −4. In others words, the two asymptotic AdS regimes seem to describe

two distinct parity breaking vacua of the same theory. The two vacua are distinguished

by the expectation value of the parity breaking order parameter being 〈O3〉 = ±4. Quite

remarkably, we also seem to find that starting in one of the two vacua, we can reach the

other by a marginal deformation with a fixed value of the deformation parameter.

Since the marginal operator is of dimension ∆ = 3 and parity odd, we tentatively

identify it with a Chern-Simons operator of a boundary gauge field. In this case the

torsion vortex induces the T-transformation in the boundary CFT [37, 41]. In appendix B

we will argue that the three dimensional Gross-Neveu model coupled to abelian gauge fields

exhibits a large-N vacuum structure that matches our holographic findings. Although our

bulk model is extremely simple to provide details for its possible holographic dual, we

regard this remarkable similarity as strong qualitative evidence that our torsion vortex is the

gravity dual of the “tunneling” between different parity breaking vacua in three dimensions.

However, in a three-dimensional quantum field theory, we do not expect that tunneling can

occur because of large volume effects, and distinct vacua remain orthogonal. Thus, referring

to the torsion vortex as a tunneling event should be taken figuratively. We leave to future

work a more careful study of the boundary interpretation of the torsion vortex solution.

An interpretation will depend on the precise topology of the boundary. [42] Moreover,

embedding our model into M-theory could provide additional clues regarding its holography.

6 Physics in the bulk: the superconductor analogy

The bulk interpretation of the exact solution is also interesting. Because the pseudoscalar

field undergoes Θ(t) → Θ(t) + 2π under t goes from −∞ to +∞, the exact solution

corresponds to a topological kink. It satisfies

∫
dtΘ̇ = 2π .

In figure 2, we plot the solution.

8We use “central charge” in d = 3 for a quantity that counts the massless degrees of freedom at the

fixed point. Such a quantity may be taken to be the coefficient in the two-point function of the energy

momentum tensor or the coefficient of the free energy density. There is no conformal anomaly in d = 3.
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Figure 2. The blue dashed line is |h(t)|, resembling the order parameter of a superconductor, while

the solid red line is ΠF , analogous to the magnetic induction of an Abrikosov vortex.

Abrikosov vortex Torsion vortex

order parameter Φ order parameter |h| = |Ȧ|
T − Tc Λ

magnetic induction B ΠF

magnetic field H Ĥ
Z-quantized magnetic flux Z2-quantized electric flux

Table 1. Abrikosov vortex v.s. Torsion vortex.

6.1 Gravity vortex as Abrikosov vortex

The gravity vortex solution (4.9), (4.12) bears some resemblance to the Abrikosov vor-

tex of superconducting systems. To avoid confusion, we emphasise here that this is not

a holographic interpretation i.e. the Abrikosov vortex (or more precisely, domail wall) is

in the bulk. In this section, we will explore this and point out some possibly interesting

features. The first thing to notice is that the plot in figure 2 is identical to the profile

of an Abrikosov vortex (see for example figure 5.1 in ref. [43].) The codimension differs,9

but there is a correspondence between our radial t-direction and the radial direction in the

Abrikosov vortex, and |h| and ΠF correspond to the condensate and magnetic induction of

the superconductor, respectively. Table 1 summarizes the correspondence. In this corre-

spondence, since the order parameter is h = Ȧ, the superconducting phase (constant order

parameter) corresponds to AdS4, while the normal phase corresponds to flat space (h = 0).

Far away from the core of the torsion vortex, the geometry is asymptotically AdS, but at

the core the spatial slice (at t→ t0) becomes flat. To see this, note that if we think of the

system as a pseudoscalar coupled to torsionless gravity, the torsion vortex has ω
◦ α

β = 0

9The difference in dimensionality of the core is what we expect, since it supports a 3-form field strength

in contrast to a 2-form field strength in superconductivity.
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and ω
◦ α

0 = Ȧẽα, and so

R
◦ α

β = −h2ẽα ∧ ẽβ , (6.1)

R
◦ α

0 = (ḣ+ h2)dt ∧ ẽα , (6.2)

T
◦ α = 0 . (6.3)

Thus, at the core, we find that the Riemann tensor has components

Rα0α0 → −3a2α , (6.4)

Rαβαβ → 0 . (6.5)

This behavior is in line with an Abrikosov vortex in which there is normal phase at the

core and superconducting phase away from the core.

The analogue of the magnetic field is what we have called Ĥ, proportional to the con-

stant α3. In the vortex, the magnetic induction, analogous to ΠF , has a penetration length

λ ∼ 1/3a, and the coherence length of the order parameter is ξ ∼ 1/6a. The penetration

and coherence lengths are obtained by looking at the exponential fall-off of these quantities

in the core of the vortex, away from their values in the superconducting phase.

The torsion vortex also has a quantized flux
∫
∗4H = ∆Θ = 2π. This flux is indepen-

dent of any parameters of the solution and of any rescaling of fields in the theory. Thus,

this is an analogue of the quantized magnetic flux in superconductivity.

Finally, note the following interesting feature. If we take a derivative of the second

equation in (4.9), we arrive at

ḧ− 6Λh− 18h3 = 0 . (6.6)

This looks like a Landau-Ginzburg equation of motion of an effective φ4 theory. This leads

us to interpret Λ ∼ T − Tc. Of course, there is no real temperature in the case of the

torsion vortex, but we note that this implies that the penetration and coherence lengths

diverge as T → Tc with exponent 1/2, as in superconductivity.

6.2 Multi-vortices and vortex condensation

In the last section, we noted that there is a strong analogue between the torsion vortex

solution and superconductivity. It is intriguing to carry the analogy further and consider

multi-vortex configurations. We have noted that at the core of the torsion vortex, the

spatial sections are flat. Thus, one might imagine that if it was favourable for torsion

vortices to condense, as vortices do in Type I superconductors, then finite regions of normal

phase (corresponding to Λ = 0) would be obtained. We will argue below that this can in

fact occur, although the system appears not to be unstable.

To understand the physics involved, the first step is to consider a configuration of two

vortices. In the superconductivity literature, this is a standard computation. One takes

two vortices separated by a distance ℓ and computes the Euclidean action. More precisely,

we will treat this here as follows. Denoting the torsion vortex schematically as Φ(t0), we

take a configuration
{

Φ(ℓ/2) , t > 0
Φ(−ℓ/2) , t < 0 .

(6.7)
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Figure 3. Size of normal state droplet vs. n for

multi-vortex.
Figure 4. Energy vs. n for multi-vortex.

We have taken a piecewise solution, because solutions of non-linear equations cannot be

simply superimposed. The result is not quite a solution to the equations of motion of

course, failing at the midpoint between the vortices. However, if we simply evaluate the

Euclidean action, we find

SE(ℓ) = 4aα3 sinh(3aℓ/2) . (6.8)

Note that this is positive, so one might naively conclude that the vortices repel each other.

However, recall that the vortex profile exists not in flat space-time, but in the metric given

by (4.13), which rises asymptotically. As a result, as we move the vortices further apart,

there is a corresponding rise in the metric between the vortices. So, we should directly

evaluate the force

F = −
dSE
dℓ

= −6aα3 cosh(3aℓ/2) < 0 . (6.9)

and thus we conclude that the vortices in fact attract each other. In the superconducting

analogue, this implies that we have a Type I superconductor. In such a superconductor, the

number of vortices is determined by the total magnetic flux, and the vortices tend to clump

together forming (potentially) finite regions of normal phase within the superconductor.

We now describe the analogous situation in our gravitational system. We have noted

that the constant Ĥ plays the role of the external magnetic induction, while H is the mag-

netic field, varying within the vortex, with ∆Θ =
∫
∗4H. Following the superconducting

analogue, if we put the system in a box of size 2L (that is we impose a cutoff on each AdS

asymptotic) the flux conservation equation is of the form

∆Θ = 2LĤ . (6.10)

The vortices carry the flux in the superconductor, and so it is natural to ask what is the

lowest energy configuration satisfying (6.10)? To analyze this, consider an array of n vor-

tices in a region of size L0. We take the vortices to be equally spaced, as one can show

that deviating from such a configuration causes a rise in energy. For such a configuration,

the flux quantization condition (6.10) gives a relation between n,L0 and Ĥ. Such a rep-

resentative curve is shown in figure 3. If we solve this equation for L0 as a function of n
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and Ĥ, we can then compute the energy as a function of n. One obtains a curve as in

figure 4. One notes that the energy is minimized for large n, and in that case, the size L0

asymptotes to a fixed value, which is found to be

L0 =
Ĥ

6a
· 2L = α3 · 2L . (6.11)

We conclude that the preferred configuration, given a fixed external flux, is a continuum of

vortices arrayed over a finite size region. Within this droplet, the system is in the normal

phase. We have noted that the vortex core is spatially flat, and so we surmise that within

the droplet, the space-time is flat. The asymptotic value of energy in figure 4 is precisely

minus that contributed by the cosmological constant. Again, the size of the droplet is set

by the value of the external H-flux, and the boundary conditions are AdS. Note that for a

fixed cutoff, there is a critical field (given by Ĥ = 6a) for which the entire spacetime is flat.

7 Conclusions

In this work we have presented in detail a simple toy model, the Nieh-Yan model, where

torsion enters through the spacetime dependence of the coupling constant of the Nieh-Yan

topological invariant. Although we have discussed the model directly in terms of torsion,

it can classically be put into equivalent forms as either a massless pseudoscalar or a Kalb-

Ramond field coupled to gravity. The model has an interesting and non-trivial holographic

interpretation. In particular, we have shown that it possesses an exact bulk solution in

Euclidean signature, termed the torsion vortex, having two asymptotically AdS4 regimes,

while the pseudoscalar acquires a kink profile. We have argued then that the holographic

interpretation of this torsion vortex is a three-dimensional CFT with two distinct parity

breaking vacua. Moreover, our bulk solution may imply that the deformation by a classi-

cally marginal pseudoscalar with a fixed coupling constant induces a transition between the

two parity breaking vacua separated by a domain wall, which would be at infinity in the

boundary components. [42] Remarkably, this qualitative behaviour is seen already in the

three-dimensional Gross-Neveu model coupled to U(1) gauge fields. The economy of our

bulk model does not allow a detailed identification of the bulk and boundary theories, nev-

ertheless we believe that our results provide a strong base where an exact bulk/boundary

dictionary for AdS4/CFT3 can be based. A further rather intriguing property of the torsion

vortex is that it can be mapped into the standard Abrikosov vortex of superconductivity.

Such a map identifies flat spacetime with a superconductor’s normal phase, while AdS is

identified with a superconducting phase. The cosmological constant would then measure

the deviation from the “critical temperature”. A phenomenon of vortex condensation is

found, similar to the analogous case in type I superconductors.

The upshot of our results is that the torsional degrees of freedom of four dimensional

gravity can provide holographic descriptions for a number of interesting properties of three

dimensional critical systems. It would be interesting to extend our analysis to more elab-

orate models where more torsional degrees of freedom become dynamical. It is also of

interest to discuss whether our simple model can be embedded into M-theory.
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A The 3 + 1 split in gravity

We recall the 3+1 split formalism. We will refer to the radial coordinate as t, although

its signature will be left arbitrary, and indicated by σ⊥ = ±1 (σ⊥ = +1 for AdS4). The

overall signature of the 4-manifold is denoted σ = det η. In addition, we note the notation

∗4 (ea ∧ eb ∧ ec) = ǫabcded (A.1)

∗4ed = −
σ

6
ǫdefge

e ∧ ef ∧ eg (A.2)

and for example

∗3 ẽ
α =

1

2
ǫαβγ ẽ

β ∧ ẽγ (A.3)

where ẽα is defined as follows. As described in [17], we split the 1-forms via

e0 = Ndt (A.4)

eα = ẽα +Nαdt (A.5)

ω0
α = σ⊥Kα + q0αdt (A.6)

ωαβ = σǫαβγ (Bγ +Qγdt) . (A.7)

We then find

Tα = T̃α + dt ∧
{

˙̃eα − d̃Nα +NKα − σǫαβγQ
βeγ − σǫαβγN

βBγ
}

(A.8)

T 0 = σ⊥Kα ∧ ẽα + dt ∧
{
−d̃N − σ⊥NαK

α + q0β ẽ
β
}

(A.9)

and we write

Rab = R̃ab + dt ∧ rab (A.10)

R̃0
α = σ⊥(d̃Kα +Kβ ∧ ω̃

β
α) ≡ σ⊥(D̃K)α . (A.11)

R̃αβ = (3)Rαβ − σ⊥K
α ∧Kβ , (A.12)

with
(3)Rαβ = σ

[
ǫαβγdBγ − σ⊥B

α ∧Bβ
]
. (A.13)

and

2ǫαβγr
0α ∧ ẽβ ∧ ẽγ = 2σ⊥ǫαβγK̇

α ∧ ẽβ ∧ ẽγ + 4QαKβ ∧ ẽ
β ∧ ẽα + 4q0α

[
ǫαβγ T̃

β ∧ ẽγ
]
.

Including the Gibbons-Hawking term, which is of the form 2σ⊥
∫
∂M ǫαβγK

α ∧ ẽβ ∧ ẽγ ,

we find

IEH =

∫
dt ∧

{
˙̃eα ∧ (4σ⊥ǫαβγK

γ ∧ ẽβ) + 2Nǫαβγ

(
(3)Rαβ − σ⊥K

α ∧Kβ −
Λ

3
ẽα ∧ ẽβ

)
∧ ẽγ

−4σ⊥N
αǫαβγ(D̃K)β ∧ ẽγ − 4q0αǫαβγT̃

β ∧ ẽγ + 4Qαẽ
α ∧Kβ ∧ ẽ

β
}

(A.14)
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Here, N and Nα are the usual Lagrange multiplier fields for the lapse and shift constraints,

while q0α and Qα are Lagrange multipliers that, in the pure gravity case, set the torsion

and the antisymmetric part of the extrinsic curvature to zero.

B Parity breaking in three dimensions

Consider the three dimensional Gross-Neveu model coupled to abelian gauge fields. The

Euclidean action is10

I = −

∫
d3x

[
ψ̄a (/∂ − ie/A)ψa +

G

2N

(
ψ̄aψa

)2
+

1

4M
FµνFµν

]
. (B.1)

M is an UV mass scale. Introducing the usual Lagrange multiplier field σ, whose equation

of motion is σ = −2G
N ψ̄aψa we can make the action quadratic in the fermions

I = −

∫
d3x

[
ψ̄a (/∂ + σ − ie/A)ψa −

N

2G
σ2 −

1

4M
FµνFµν

]
. (B.2)

The model possesses two parity breaking vacua distinguished by the value of the pseu-

doscalar order parameter 〈σ〉. This is seen as follows: switching off the gauge fields mo-

mentarily one integrates over the fermions to produce a large-N effective action as

Z =

∫
(Dσ)eN[Tr log(/∂+σ)− 1

2G

R

d3xσ2] . (B.3)

The path integral has a non-zero large-N extremum σ∗ found by setting σ = σ∗ + 1√
N
λ

Z =

∫
(Dλ)e

N
h

Tr log(/∂+σ∗)− 1

2G

R

d3xσ∗+ 1√
N

n

Tr λ
/∂+σ∗

−σ∗
G

R

d3xλ
o

+O(1/N)
i

. (B.4)

The term in the curly brackets is the gap equation. To study it one considers a uniform

momentum cutoff Λ to obtain

1

G
=

∫ Λ d3p

(2π)3
2

p2 + σ2
∗

= (Tr1)

[
Λ

π2
−

|σ∗|

π2
arctan

Λ

|σ∗|

]
. (B.5)

Defining the critical coupling as
1

G∗
=

Λ

π2
, (B.6)

(B.5) possesses a non-zero solution for σ∗ when G > G∗ given by

|σ∗| =
2π

G

(
G

G∗
− 1

)
≡ m. (B.7)

The two distinct parity breaking vacua then have

σ∗ = −
2G

N
〈ψ̄aψa〉 = ±m. (B.8)

10We use ψ̄i, ψi (a = 1, 2, . . . , N) two-component Dirac fermions. The γ-matrices are defined in terms of

the usual Pauli matrices as γi = σi i = 1, 2, 3.
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Going back to (B.2) one can tune G > G∗ and start in any of the two parity breaking

vacua. Suppose we start from σ∗ = +m. To leading order in N we have

Z =

∫
(DAµ)(Dψ̄

a)(Dψa)e
R

d3x[ψ̄a(/∂+m−ie/A)ψa− N
2G
m2+O(1/

√
N)− 1

4M
FµνFµν ] . (B.9)

As is well known [44, 45] for an odd number N of fermions the path integral (B.9) yields

an effective action for the gauge fields which for low momenta is dominated by the Chern-

Simons term i.e.

Z ≈

∫
eSCS , (B.10)

with

SCS = i
ke2

4π

∫
d3xǫµνρAµ∂νAρ , k =

N

2
. (B.11)

Had we started from the σ∗ = −m vacuum, we would have found again (B.10), however

with k = −N
2 , i.e. the vacuum with σ∗ = −m yields an effective Chern-Simons action with

k = −N
2 .

Consider now deforming the action (B.9) by the Chern-Simons term with a fixed

coefficient as

Z =

∫
(DAµ)(Dψ̄

i)(Dψi)e
R

d3x[ψ̄i(/∂+m−ie/A)ψi− N
2G
m2+O(1/

√
N)− 1

4M
FµνFµν−iq

R

d3xǫµνρAµ∂νAρ] .

(B.12)

If q is fixed to

q =
Ne2

4π
, (B.13)

the effective action for the gauge fields resulting from the fermionic path integrals in (B.12)

is going to be exactly equal the one obtained when we start at the σ∗ = −m vacuum. In

other words, deforming the σ∗ = +m vacuum with a Chern-Simons term with a fixed

coefficient is equivalent to being in the σ∗ = −m vacuum. This is exactly analogous to the

holographic interpretation of our torsion vortex.
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